
Jailbreaking iOS in the

Post-Apocalyptic Age

coolstar & tihmstar

CStar_OW
coolstar

tihmstar
tihmstar

Ages of Jailbreaking

Jailbreak in a nutshell
• Exploit kernel -> (get unstable kernel write)

• Get stable kernel read/write

• Make it available to other processes

• Privilege escalation (get ability to spawn process as root)

• Escape sandbox

• Become root

• Bypass codesign enforcement

• System-wide code injection

• Optional: read/write root filesystem

Jailbreak in a nutshell
• Exploit kernel -> (get unstable kernel write)

• Get stable kernel read/write

• Make it available to other processes

• Privilege escalation (get ability to spawn process as root)

• Escape sandbox

• Become root

• Bypass codesign enforcement

• System-wide code injection

• Optional: read/write root filesystem

We start with  
existing exploit

Get stable kernel read/write
And make it persistent

task_for_pid

• Mach syscall

• Grants task port for an arbitrary process

• If one owns the task port, they own the process

• read/write memory, control threads...

• pid 0 = kernel_task

Explanation

KRW: ≤iOS 8 and ≤iPhone6

• patch kernel to allow task_for_pid(0)

• call api from any process

• use task port for kernel read/write

Patch

Bypass

iOS 9 & iPhone5s: KPP
• Kernel Patch Protection prevents kernel from being patched 

(kernel text & const data segment)

• KPP runs in EL3

• Kernel can no longer be patched

• KPP bypass possible

• Kernel can be patched again

More info Jailbreaking iOS from Past to Present: https://www.youtube.com/watch?v=t01tbbjJHbs

Explanation

KRW: ≤iOS 10.2.1 and ≤iPhone6s

Patch

Bypass

iPhone 7: KTRR

• Hardware mitigation in iPhone 7

• Replaces old style KPP

• Memory controller locks down kernel pages

• Kernel text and const data marked as read-only region

• Kernel can’t execute code outside read-only region

More info Jailbreaking iOS from Past to Present: https://www.youtube.com/watch?v=t01tbbjJHbs

Explanation

host_special_ports

• XNU provides some special ports for userland

• Userland allows setting additional ports

• Allows communication with kernel and system
daemons over mach ports for special
purposes

Explanation

KRW: ≤iOS 10.2.1 and ≤iPhone7

• Get kernel task through exploit

• Write kernel task to host special port 4

• Userland code now calls host_get_special_port(4)

• Equivalent to task_for_pid(0)

Bypass

iOS 10.3: pointer check

• mach_vm_* APIs added
pointer check

• Deny using kernel task from
userland

• Kernel task is useless now :(

• or is it?

Explanation

KRW: ≤iOS 12.5.5

• Remapping task structure in
kernel memory bypasses check

• Write remapped kernel task to
host special port 4

• use mach_vm_* APIs for kernel
read/write

Bypass

iOS 13: zone_require

• Kernel allocations are split in zones

• Different allocation types go to their dedicated zone

• Task structures need to be in a certain allocation zone

• Different from what mach_vm_* APIs allocate to

• Access to task in wrong zone causes kernel panic

Explanation

KRW: ≤iOS 13.7
• Bypass 1: ≤iOS 13.5

• Alloc kernel memory

• Copy kernel task

• Modify zone type

• Bypass 2:

• Create corpse task 
(barebones task struct in kernel)

• Assign kernel map to corpse

• Mark corpse task as active

• Write fake task to host special port 4

• use mach_vm_* APIs for kernel read/write

Bypass

Pointer Authentication Codes
• ARMv8.3 hardware extension

• Message-Authentication-Codes for pointers

• Protects data-in-memory in relation to context with a secret-key

• Return value, stack pointer, function pointers, vtables, data pointers

• Structure contents (by hashing values and signing the hash)

• Context also contains structure address & type info

• Prevents reuse and type confusion

Explanation

iOS 14 & iPhone Xs: PAC (and more)

• PAC protects task, host, port structures

• PAC prevents calling remap functions in kernel

• Page Protection Layer protects writing to kernel map

• Pointer checks against kernel map

• zone_require extended to pmap

Explanation

KernelRW iOS 14-15.1.1-?
• Init needs:

• Early kernel read & one 8-byte kernel write

• Address of current task structure

• Allocates

• Two mach ports (read_port, write_port)

• IOSurface object with a surface

• Retrieves address of ports and surface location in surface clients array

• Use write to replace surface in array with address of read_port.ip_context

Bypass

• kread32:

• Set context of read_port to
readaddr

• Call IOConnectCallMethod 8 on
surface to read 4 bytes

KernelRW iOS 14-15.1.1-?
Bypass

• kwrite64:

• Set context of read_port to
address of write_port

• Set context of write_port to
writeaddr

• Call IOConnectCallMethod
33 on surface to write 8 bytes

KernelRW iOS 14-15.1.1-?
BypassBypass

• Cleanup before process exit:

• Restore surface address in clients array (single 8-byte write)

• Handoff:

• Receive read/write_ports and surface from other process via mach
ports

• Retrieve kernel address and perform initial setup write

• Transfer original surface address back to other process (for cleanup)

KernelRW iOS 14-15.1.1-?
Bypass

• Primitive needs to be passed around, not persistent on its own 
(dies on process exit)

• Jailbreak eventually passes KernelRW to launchd

• launchd holds onto the raw primitives

• Other processes can talk to launchd for kernel read/write 
(via libKernRW)

KernelRW iOS 14-15.1.1-?
Bypass

Jailbreak in a nutshell
• Exploit kernel -> (get unstable kernel write)

• Get stable kernel read/write

• Make it available to other processes

• Privilege escalation (get ability to spawn process as root)

• Escape sandbox

• Become root

• Bypass codesign enforcement

• System-wide code injection

• Optional: read/write root filesystem

XNU

• Kernel consists of

• BSD part

• Mach part

• IOKit part  
which glues things together

Explanation

BSD task proc

• Each task has a BSD proc structure in kernel

• Proc structure manages resources and permissions of a process

• Each BSD proc structure has a ucred structure

Explanation

BSD/posix ucred
• Process credentials

• Manage user accounts for processes

• Contains:

• uid (user id), gid (group id)

• MACF label structure  
(for AMFI & sandbox)

Explanation

Mandatory Access Control Framework

• Introduced in FreeBSD

• Hooks across the kernel allow restricting permissions through policy
modules despite being root

• Enforced by the Kernel

• AMFI (Apple Mobile File Integrity) and sandbox register MACF
policy hooks

Explanation

Privilege escalation

Priv: ≤iOS 10 (Sandbox & Root)

• Set our proc’s ucred pointer to the kernel’s ucred

• Sandbox has a hardcoded check to not enforce on kernel ucred

• Having kernel ucred already grants root permissions

• Technically works up to iOS 13,  
but crippled in iOS 11 

Bypass

• Stealing kernel ucred without being the kernel may cause Sandbox
to panic with “Shenanigans”

iOS 11: "shenanigans"
Explanation

Priv: ≤iOS 13 (Sandbox)

• We don't necessarily need kernel ucred

• Don't copy kernel ucred, but ucred.cr_label
to escape sandbox

• We're now unsandboxed but still mobile user
Copy from

kernel ucred

Bypass

Priv: ≤iOS 15.1.1 (Get Root)
• Once we’re out of sandbox we can call setuid(0)

• setuid has a check to allow if ruid, uid, or svuid match

• Patching ruid causes problems as ucreds may be reused and may
elevate random processes

• We can patch svuid to 0

• Call setuid(0) twice (update uid and euid on a new ucred)

Patch

Bypass

iOS 14: Data PAC

• Data pointers & struct members are
now protected by PAC

Protected

Explanation

Priv: ≤iOS 14 (Sandbox)
• ucred.cr_label protected by PAC

• label contains l_ptr array with pointers to MACF policies

• AMFI is policy 0, sandbox is policy 1

• iOS 14 allows setting PAC’d pointers to NULL

• Setting sandbox pointer to NULL escapes sandbox,  
similar to iOS 13

NULL

Bypass

iOS 15: More data PAC

• They protected just this pointer against
NULL-ing*

• Upper bits on a NULL pointer now
require a PAC signature Protected

against NULL

* ok they also did protect the label itself, but that couldn’t be NULL’d anyways

Explanation

iOS 15 sandbox bypass ?

eta 2023

Jailbreak in a nutshell
• Exploit kernel -> (get unstable kernel write)

• Get stable kernel read/write

• Make it available to other processes

• Privilege escalation (get ability to spawn process as root)

• Escape sandbox

• Become root

• Bypass codesign enforcement

• System-wide code injection

• Optional: read/write root filesystem

Bypass codesign enforcement

AMFI: ≤iPhone6s

• Patch kernel (AMFI.kext) to treat every
binary as being in trustcache

• Minor differences in patching between
≤iOS 11 and ≥iOS 12, but same idea

• KTRR on ≥iPhone7 prevents kernel from
being patched :(

Bypass

AMFI: ≤iPhone X (or with PAC bypass)
• AMFI contains Trustcaches (static & dynamic)

• Static trustcaches for binaries built-in to iOS

• Dynamic trustcaches for binaries shipped with Xcode

• Calling kernel function allows loading new trustcache to mark set of binaries as
trusted

• Used on Electra & Chimera jailbreaks (for iOS 11 & 12) for jailbreak-bundled binaries

• Requires PAC bypass on iPhone XS or newer

• Only usable for a limited number of trustcaches (will run out of Kernel Memory)

Explanation

AMFI: ≤iPhone X (theory)

• Load large dynamic trustcache with placeholder hashes

• jailbreakd computes hashes before each binary runs

• If hash not already in kernel memory, write to trustcache
placeholder slots

Bypass

AMFI: ≥iPhone Xs with PAC bypass
(theory)

• ≥iPhone Xs has kernel functions for load/unload trustcache

• Load first dynamic trustcache with jailbreak base binaries

• jailbreakd computes hashes before each binary runs

• jailbreakd loads trustcache for the binary

• jailbreakd unloads trustcache after the binary runs

• Codesignature is cached for future runs in vnode

Bypass

AMFI: ≤iOS 11 and ≤iPhone X
• AMFI calls amfid in userspace for binaries not in in trustcache as long as they  

contain any signature

• amfid calls MISValidateCodeSignatureAndCopyInfo

• We can load a dylib into amfid to patch the function to return 0 and compute a CDHash

• We put dylib in trustcache (write to kernel memory)

• amfid returns that the binary is trusted

• Binary runs

• Deployed in mach_portal, triple_fetch, liberiOS, and Electra jailbreaks

Bypass

iOS 12: CoreTrust
• CoreTrust.kext added to kernel

• AMFI calls CoreTrust for binaries not in trustcache before going to
amfid

• CoreTrust requires valid signature that chains back to Apple

• amfid doesn't get called if CoreTrust verification fails

• amfid verifies certificate expiry and provisioning profiles

Explanation

iPhone XS: Page Protection Layer
• Hardware mitigation introduced with iPhone XS

• Protects certain data segments & page maps in the kernel

• Only __PPLTEXT section of the kernel can write to protected regions

• Must call trampoline functions to change CPU state and enter PPL

• Like microkernel with syscalls in kernel (both in EL1)

• PAC prevents attacker calling said functions

Explanation

iPhone XS: pmap_cs
• Is part of PPL

• Holds the trustcache & validated code signature blobs

• Distinguished binary trust levels

• TL1 - App Store / Sideloaded (anything allowed by amfid)

• TL2 & 3 - Trustcaches (Xcode Developer Image & iOS built-in binaries)

• TL1 libraries can't be loaded to higher trust binaries

• Prevents loading 3rd-party dylib into amfid

Explanation

Codesign vnode cache
• AMFI gets called when ubc_cs_blob_add in the kernel tries

loading a code signature for a binary

• Kernel maintains cache of csblobs on each vnode

• vnode is the kernel representation of a file

• csblob is the kernel representation of a code signature

• AMFI doesn't get called if vnode already has a code signature
attached

Explanation

AMFI: ≤iOS 12-? (with kexec)
• jailbreakd gets called before a binary runs

• If signature wasn't loaded, write to its vnode cache 
(replicate ubc_cs_blob_add by calling kernel functions)

• Patch code signature to add arbitrary entitlements before running binary

• Call PPL trampoline to register code signature on ≥iPhone Xs

• Bypasses all of AMFI (including CoreTrust)

• Changing code signature of system binaries changes its hash

• Demotes its trustlevel to allow injecting into it

• Deployed in Chimera jailbreak

Bypass

AMFI: ≤iOS 14 (no kexec)
• jailbreakd gets called before a binary runs

• jailbreakd signs it with a free (expired) developer certificate

• Can add arbitrary entitlements

• Call fcntl syscall F_ADDSIGS

• Loads code signature into kernel

• Code signature passes CoreTrust verification (valid signature by allowed entity)

• If amfid checks pass, signature is attached to vnode

• AMFI does not get called again when the binary runs

• Deployed in Odyssey & Taurine jailbreaks

Bypass

AMFI: ≤ iOS 13 - Patching amfid
• Don’t load dylib into amfid

• Get task port for amfid (allows reading/writing to its memory)

• Register exception port to amfid (we are the debugger now)

• Corrupt GOT pointer of MISValidateCodeSignatureAndCopyInfo

• amfid crashes next time it’s called

• Catch exception message and read binary file name from cpu registers

• Manually write CDHash to memory

• Continue program flow as if validation passed

Bypass

AMFI: ≤ iOS 13 getting amfid task port
• Use task_for_pid() to get amfid task port

• AMFI requires either:

• Local process task_for_pid-allow entitlement

• Target process get-task-allow entitlement

• ucred.cr_label contains AMFI slot with entitlements

• Steal label of arbitrary process with correct
entitlement (e.g. /bin/ps) Copy from

/bin/ps

Bypass

AMFI: ≤iOS 14: getting amfid task port
• ucred.cr_label.l_ptr is OSDictionary from XML

• Protected by PAC

• Contains keys and values

• Not protected by PAC

• Replace entitlements with the ones we need
from other processes

• Grab task_for_pid-allow from /bin/ps

Copy from

/bin/ps

Protected

Bypass

iOS 14: Userland PAC

• Processes share PAC keys depending on origin

• Platform binaries (except WebKit / iMessageBlastdoor)

• Team ID

• Jailbreak app is not a platform binary

• PAC keys don't match amfid

• Can't sign pointers to manipulate process state (exception handling)

Explanation

iOS 14: Userland PAC

• Apple accidentally
documented this for us

Explanation

iOS 14: Userland PAC

• Change A key a thread
by overwriting it in the
kernel

Copy from

amfid

Bypass

AMFI: iOS 14: Userland PAC
• Changing PAC keys of running thread will

crash it if it calls C functions

• GOT pointers are signed with A key

• We control what runs on our thread

• Craft signing oracle in assembly without
relying on libc 
 

Bypass

AMFI: iOS 14: Userland PAC

Signing oracle

Bypass

• Changing PAC keys of running thread will
crash it if it calls C functions

• GOT pointers are signed with A key

• We control what runs on our thread

• Craft signing oracle in assembly without
relying on libc 
 

AMFI: iOS 14: Userland PAC

Signing oracle

Bypass

• Changing PAC keys of running thread will
crash it if it calls C functions

• GOT pointers are signed with A key

• We control what runs on our thread

• Craft signing oracle in assembly without
relying on libc

• Turns out there is a mach API for this o.O

AMFI: ≤iOS 13 - Patching amfid
• Don’t load dylib into amfid

• Get task port for amfid (allows reading/writing to its memory)

• Register exception port to amfid (we are the debugger now)

• Corrupt GOT pointer of MISValidateCodeSignatureAndCopyInfo

• amfid crashes next time it’s called

• Catch exception message and read binary file name from cpu registers

• Manually write CDHash to memory

• Continue program flow as if validation passed

X14

Bypass

iOS 15: OSEntitlements
• Switches from XML to DER entitlements

• Is backed by new OSEntitlements object in kernel

• OSEntitlements is closed source in AMFI.kext

• Protected by PAC Entire blob
is protected

Explanation

iOS 15 AMFI bypass ?
eta 2023

Jailbreak in a nutshell
• Exploit kernel -> (get unstable kernel write)

• Get stable kernel read/write

• Make it available to other processes

• Privilege escalation (get ability to spawn process as root)

• Escape sandbox

• Become root

• Bypass codesign enforcement

• System-wide code injection

• Optional: read/write root filesystem

System-wide code injection

Why system-wide code injection?

• Allows users to install modifications
(tweaks) to the system

• Endless customizations

• e.g. custom icons, custom home
screens, more dock icons, etc.

Requirements for system-wide code
injection

• Load custom code in process on loading

• Must be able to modify TEXT segment

• Loosen sandbox restrictions to load assets and tweak preferences

Load 
Code

Modify 
TEXT

Sandbox

≤iPhone 6S

Patching the kernel - ≤iPhone 6S

• Patch sandbox MACF hooks

• Patch check in vm_fault_*

Load 
Code

Modify 
TEXT

Sandbox

iPhone
6s

Bypass

How do daemons get spawned on iOS

• launchd (PID 1) is equivalent to initd or systemd on Unix systems

• Calls posix_spawn to execute daemons

• Users tap apps on SpringBoard, but launchd executes them 
(similar to daemons)

Explanation

Loading custom code into a process

≤iPhone 6S

• dyld is the dynamic linker in iOS, macOS, etc.

• dyld loads libraries specified by DYLD_INSERT_LIBRARIES env
var on process launch

• Requires get-task-allow entitlement via kernel patch

Load 
Code

Modify 
TEXT

Sandbox

iPhone
6s

Explanation

Setting environment variables in
daemons on iOS ≤iPhone 6S

• Load a dylib into launchd

• Use task port

• Dylib hooks posix_spawn() and adds dyld env var

• dyld in the new process loads requested library

Load 
Code

Modify 
TEXT

Sandbox

iPhone
6s

Bypass

System-wide code injection  
≤iPhone 6S

• Completed

Load 
Code

Modify 
TEXT

Sandbox

iPhone
6s

≥iPhone 7 (kexec)

Setting environment variables in
daemons on iOS (with kexec)

• Load a dylib into launchd

• Use task port

• Dylib hooks posix_spawn() to add dyld env var

• dyld in the new process loads requested library

load dylib into
trustcache

process does
not run due to

lack of
codesigning

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Bypass

Problems ≥iPhone 7 (kexec)

• CoreTrust prevents loading binaries without Apple authenticated
code signature

• Can't patch kernel (KTRR)

• Bypass requires calling jailbreakd before spawning processes

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Explanation

Setting environment variables in
daemons on iOS (with kexec)

• Load a dylib into launchd

• Use task port

• Dylib hooks posix_spawn() to add dyld env var

• Calls jailbreakd to load modified code signature before the binary
runs

• dyld in the new process loads the requested library

load dylib into
trustcache

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Bypass

What about other processes?
• Other processes can call posix_spawn, fork+exec, system...

• Most functions wrap around either posix_spawn or exec

• exec can be hooked and redirected to posix_spawn with
POSIX_SPAWN_SETEXEC attribute

• posix_spawn can be hooked similar to launchd by injected dylib

• Injection is now system-wide  
(every process has the dylib injected)

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Bypass

Modifying TEXT in arbitrary processes
≥iPhone 7

• Codesigning is still enforced despite loading custom code
signatures

• Can't modify arbitrary process's TEXT

• or can we?

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Explanation

Modifying TEXT in arbitrary processes
≥iPhone 7

• Debugging through Xcode requires modifying TEXT for 
breakpoints from lldb

• Guarded by get-task-allow

• But we have the entitlement, why does the process still crash?

• Process must be marked as debugged

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Explanation

Modifying TEXT in arbitrary processes
≥iPhone 7

• dylib loaded into all processes calls jailbreakd on launch

• jailbreakd adds CS_DEBUGGED flag in kernel

• Process can now patch TEXT

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Bypass

Loosening sandbox restrictions
• Tweaks need to be able to read certain directories from app sandbox

• Sandbox supports adding extensions via a syscall if provided appropriate token

• Token can be generated outside of sandbox by calling
sandbox_extension_issue_file

• Can be passed via environment variable to our injected dylib from launchd

• Dylib calls sandbox_extension_consume with token

• Access to additional directories granted

• Supported API in iOS / macOS. Not a security vulnerability

Load 
Code

Modify 
TEXT

Sandbox

with 
kexec

Explanation

• Load a dylib into launchd

• Use task port

• Dylib calls sandbox_extension_issue_file to get sandbox tokens

• Dylib hooks posix_spawn() to add dyld and sandbox env vars

• Calls jailbreakd to load modified code signature before the binary runs

• dyld in the new process loads the requested library

Setting environment variables in
daemons on iOS (with kexec)

load dylib into
trustcache

Load 
Code

Modify 
TEXT

with 
kexec

Sandbox

Bypass

≥iPhone XS (no kexec)

• Load a dylib into launchd

• Use task port

• Dylib calls sandbox_extension_issue_file to get sandbox tokens

• Dylib hooks posix_spawn() to add dyld and sandbox env vars

• Calls jailbreakd to load modified code signature before the binary runs

• dyld in the new process loads the requested library

Setting environment variables in
daemons on iOS (no kexec)

Load 
Code

Modify 
TEXT

no 
kexec

Sandbox

dylib is not in
trustcache

Problems ≥iPhone XS (no kexec)

• PAC prevents calling kernel functions

• PPL (pmap_cs) prevents TL1 binaries from injecting into TL 2 or 3
(launchd is TL3)

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

Recap: ≤iOS 14 - Patching amfid
• Don’t load dylib into amfid

• Get task port for amfid (allows reading/writing to its memory)

• Register exception port to amfid (we are the debugger now)

• Corrupt GOT pointer of MISValidateCodeSignatureAndCopyInfo

• amfid crashes next time it’s called

• Catch exception message and read binary file name from cpu registers

• Manually write CDHash to memory

• Continue program flow as if validation passed

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Bypass

• Don’t load dylib into amfid

• Get task port for amfid (allows reading/writing to its memory)

• Register exception port to amfid (we are the debugger now)

• Corrupt GOT pointer of MISValidateCodeSignatureAndCopyInfo

• amfid crashes next time it’s called

• Catch exception message and read binary file name from cpu registers

• Manually write CDHash to memory

• Continue program flow as if validation passed

Patching amfid launchd (Approach 1,
no kexec)

launchd

launchd

posix_spawn

launchd

launchd

load code signatures and modify env vars

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Bypass

Pitfalls to Approach 1 (no kexec)
• jailbreakd must remain alive to debug launchd

• jailbreakd crashing means launchd crashing

• launchd crashing means kernel panic

• iOS has a horrible habit of killing random non-launchd processes if the
device is low on memory

• Not as stable as loading dylib into launchd

• ... but can we?

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

Loading a dylib into launchd (no
kexec)

• Need to somehow demote launchd's TL

• launchd TL is behind PPL

• jailbreakd can demote TL of newly spawned binaries by modifying
its signature

• Need to somehow respawn launchd

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

Userspace reboots

• Introduced to launchd in iOS 9 / macOS 10.11

• "launchctl reboot userspace"

• Can run automatically overnight if iOS device is low on RAM

• Stops all daemons, launchd exec's itself, new launchd starts
daemons up again

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

Hooking a userspace reboot (no
kexec)

• Can't inject dylib into launchd as its TL isn't demoted until
userspace reboot

• Can't debug launchd as all daemons are dead during a userspace
reboot

•or can we?

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

Recap: Codesign vnode cache
• AMFI gets called when ubc_cs_blob_add in the kernel tries

loading a code signature for a binary

• Kernel maintains cache of csblobs on each vnode

• vnode is the kernel representation of a file

• csblob is the kernel representation of a code signature

• AMFI doesn't get called if vnode already has a code signature
attached

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

Hooking a userspace reboot (no
kexec)

• Cache code signature of jb binaries and launchd in vnode by calling jailbreakd

• Double-fork + exec to spawn 2nd jailbreakd instance

• "detached" from launchd / initd -> not a daemon

• Temporarily debug launchd to kickstart injection

• Ask launchd politely to userspace reboot (kills amfid & 1st jailbreakd instance)

• launchd exec's itself, detached jailbreakd injects dyld env var

• New launchd is demoted and loaded our dylib

• Detached jailbreakd (2nd instance) can now exit

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Bypass

• Load a dylib into launchd

• Demoted via userspace reboot

• Dylib calls sandbox_extension_issue_file to get sandbox tokens

• Dylib hooks posix_spawn() to add dyld and sandbox env vars

• Calls jailbreakd to load modified code signature before the binary runs

• dyld in the new process loads the requested library

Setting environment variables in
daemons on iOS (no kexec, Approach 2)

Load 
Code

Modify 
TEXT

Sandbox

jailbreakd is not
running yet

no 
kexec

Bypass

• Load a dylib into launchd

• Demoted via userspace reboot

• Dylib calls sandbox_extension_issue_file to get sandbox tokens

• Dylib tells launchd to restart amfid, amfidebilitate and jailbreakd (kill codesigning
again)

• Dylib hooks posix_spawn() to add dyld and sandbox env vars

• Calls jailbreakd to load modified code signature before the binary runs

• dyld in the new process loads the requested library

Setting environment variables in
daemons on iOS (no kexec, Approach 2)

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Bypass

Modifying TEXT in arbitrary processes
≥iPhone XS (no kexec)

• Dylib loaded into all processes calls jailbreakd on launch

• jailbreakd adds CS_DEBUGGED flag in kernel

• Process can now patch TEXT

Load 
Code

Modify 
TEXT

Sandbox

kexec
no kexec

no 
kexec

Bypass

Loosening sandbox restrictions
• Tweaks need to be able to read certain directories from app sandbox

• Sandbox supports adding extensions via a syscall if provided appropriate token

• Token can be generated outside of sandbox by calling
sandbox_extension_issue_file

• Can be passed via environment variable to our injected dylib from launchd

• Dylib calls sandbox_extension_consume with token

• Access to additional directories granted

• Supported API in iOS / macOS. Not a security vulnerability

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

kexec
no kexec

Explanation

• Primitive needs to be passed around, not persistent on its own 
(dies on process exit)

• Jailbreak eventually passes KernelRW to launchd

• launchd holds onto the raw primitives

• Other processes can talk to launchd for kernel read/write 
(via libKernRW)

KernelRW iOS 14-15.1.1-?

oops

still need to handle this. Lost during the userspace reboot

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

• Cache code signature of jb binaries and launchd in vnode by calling jailbreakd

• Double-fork + exec to spawn 2nd jailbreakd instance

• "detached" from launchd / initd -> not a daemon

• Temporarily debug launchd to kickstart injection

• Ask launchd politely to userspace reboot (kills amfid & 1st jailbreakd instance)

• launchd exec's itself, detached jailbreakd injects dyld env var

• New launchd is demoted and loaded our dylib

• Detached jailbreakd (2nd instance) can now exit

Hooking a userspace reboot (no
kexec)

jailbreak passes KernelRW to detached jailbreakd

detached jailbreakd passes KernelRW to launchd

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Bypass

Persisting KernelRW

• Jailbreak plays hot potato with KernelRW until it is passed to
demoted launchd

• Demoted launchd can still userspace reboot afterwards

• jailbreakd can respawn

• How to persist KernelRW?

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Explanation

Persisting KernelRW
• launchd holds onto KernelRW after the first userspace reboot

• amfidebilitate and jailbreakd (in daemon form) can talk to launchd to do
kernel read/write

• launchd calls posix_spawn on next userspace reboot (with exec
attribute)

• Pass KernelRW to temporary detached jailbreakd before launchd execs
itself

• KernelRW gets passed back to launchd once it relaunched

Load 
Code

Modify 
TEXT

Sandbox

no 
kexec

Bypass

Jailbreak in a nutshell
• Exploit kernel -> (get unstable kernel write)

• Get stable kernel read/write

• Make it available to other processes

• Privilege escalation (get ability to spawn process as root)

• Escape sandbox

• Become root

• Bypass codesign enforcement

• System-wide code injection

• Optional: read/write root filesystem

Questions?

Bonus: Read/Write rootFS ≤iOS 14

• iOS ships with a read-only root filesystem

• Could simply remount it as read/write prior to iOS 7

• macOS 10.15 and higher also use a read-only root filesystem

• Jailbreak provides* a read/write root filesystem for users (and
tweaks) to place files on

Explanation

*until now? (as of iOS 14)

mnt: ≤iOS 11.2, ≤iPhone 6S

• Patch kernel to allow mounting as read/write

• Call mount() to remount the root filesystem as read/write

Bypass

mnt: ≤iOS 11.2 (all devices)
• mount has a check to prevent remounting

ROOTFS

• Temporarily unset MNT_ROOTFS flag in
kernel

• Call mount() to remount the root filesystem
as read/write

• Reset MNT_ROOTFS flag in kernel

patch Bypass

iOS 11.3: APFS Snapshot

• Root filesystem is now mounted from a read-only APFS snapshot

• Snapshots are used under the hood of time machine backups

• Snapshots are inherently unmodifyable

• We need to mount the live fs, not snapshot

Explanation

mnt: iOS 11.3-11.4.1 ≤iPhone 7
• Find the vnode of /dev/disk0s1s1

• Follow pointers in: rootfs vnode -> mount -> devvp

• Unset the flag that specifies it's in use/mounted already

• Live fs can be temporarily mounted to another directory

• Rename root fs snapshot

• Reboot

• Live fs gets mounted as read-only on subsequent boots

Bypass

mnt: ≤iOS 11.2 (all devices)
• mount has a check to prevent remounting

ROOTFS

• temporarily unset MNT_ROOTFS flag in
kernel

• call mount() to remount the root filesystem
as read/write

• reset MNT_ROOTFS flag in kernel

X4

Bypasspatch

iOS 12: Snapshot flag

• iOS 12 has a flag set on the snapshot in kernel memory

• Can't just rename it anymore

• ...or can we?

Explanation

mnt: ≤iOS 14 Unsetting Snapshot flag
• Live fs temporarily mounted to another directory

• Get vnode of temporary directory

• Snapshot vnode is on the cached vnodelist off the new mount

• Flag lives on the vnode's v_data (filesystem specific data)

• Can simply unset the flag

• Rename root fs

• Reboot

• Live fs gets mounted as read-only on subsequent boots

Bypass

mnt: ≤iOS 11.4 (all devices)
• mount has a check to prevent remounting

ROOTFS

• temporarily unset MNT_ROOTFS flag in
kernel

• call mount() to remount the root filesystem
as read/write

• reset MNT_ROOTFS flag in kernel

X14
Bypasspatch

iOS 15: Sealed Snapshot
• APFS snapshot sealed in iOS 15

• Also sealed in macOS Big Sur

• iOS 15 ensures that live fs is never mounted

• Can rename snapshot, but device will bootloop

• Jailbreak app runs too late

• Will have to live without read/write root fs :(

• Can simply place our files elsewhere (like on the data volume)

Explanation

Jailbreak in a nutshell
• Exploit kernel -> (get unstable kernel write)

• Get stable kernel read/write

• Make it available to other processes

• Privilege escalation (get ability to spawn process as root)

• Escape sandbox

• Become root

• Bypass codesign enforcement

• System-wide code injection

• Optional: read/write root filesystem

Congrats you're jailbroken!
• untar bootstrap with useful binaries (e.g. shell

commands and Sileo)

• On iOS 14 and lower this can go to the root
filesystem!

• On iOS 15 this will need to be somewhere else

• Call LaunchServices to register a new app and/or
start an SSH server

• Your device is now jailbroken

Current state of affairs
• Full jailbreak with read/write root filesystem up to iOS 14 on all devices

• Apple's mitigations have resulted in increasing complexity of the jailbreak

• Jailbreak tool, codesign bypass, userland code injection, system-wide code injection now
require tight integration since iOS 12

• Integration has gotten even tighter with even persistent Kernel read/write depending on the
userland injection library since iOS 14

• Jailbreak and libhooker depend on each other, are no longer separate (unlike like prior
jailbreaks and Substrate)

• Newer jailbreaks replace kernel patch functionality by doing system-wide userland code
modification

Explanation

iOS 15: eta 2023???

Questions?

